
New insights on the accretion disk-winds connection in radio-loud AGNs from Suzaku

Francesco Tombesi

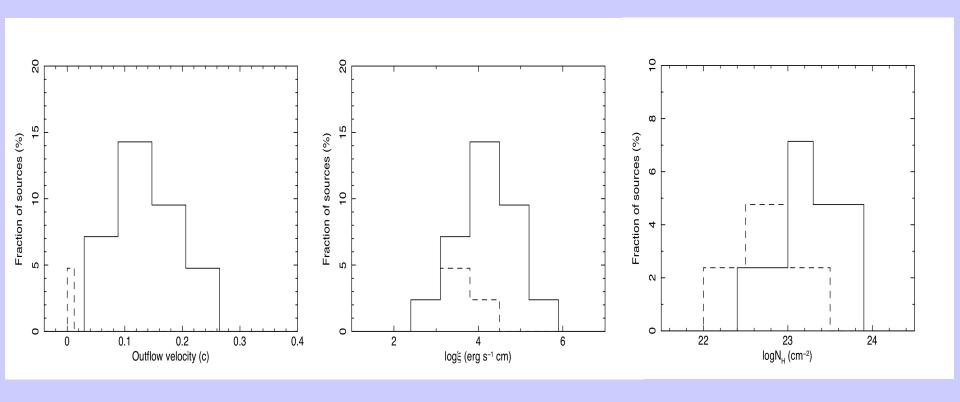
NASA/GSFC/CRESST, Greenbelt, MD (USA)

University of Maryland, College Park, MD (USA)

Main collaborators: R. M. Sambruna, C. S. Reynolds, M. Cappi, J.N. Reeves, V. Braito, L. Ballo, R. Mushotzky

"Exploring the X-ray Universe: Suzaku and Beyond", SLAC, July 20-22 2011

X-ray evidence for ultra-fast outflows in radio-quiet AGNs


Recent evidence for blue-shifted Fe K absorption lines at E>7keV in the X-ray spectra of Seyferts/QSOs (e.g., Chartas et al. 2002, 2003; Pounds et al. 2003; Dadina et al. 2005; Markowitz et al. 2006; Braito et al. 2007; Turner et al. 2008; Cappi et al. 2009; Reeves et al. 2009)

Ultra-fast Outflows (UFOs) with velocities ~0.1c, connected with accretion disk winds/outflows. Possibly important for AGN cosmological feedback (e.g., King 2010)

Systematic 4-10keV spectral analysis on a complete sample of 42 Seyferts, 101 XMM-Newton observations (Tombesi et al. 2010a)

- Global statistical significance lines is high (>5σ) and solved publication bias
- Detection frequency >40%, possibly large covering fraction and not collimated

X-ray evidence for ultra-fast outflows in radio-quiet AGNs

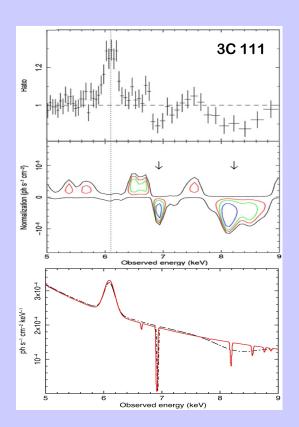
Xstar photo-ionization modeling and curve of growth analysis of UFOs, distributions of absorber parameters in Seyferts (Tombesi et al. 2011, ApJ accepted)

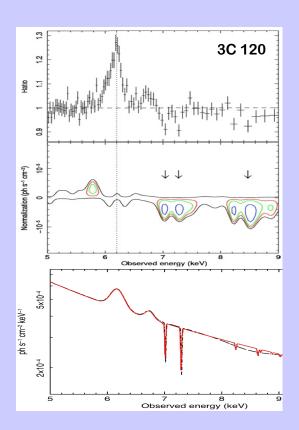
- Ultra-fast, outflow velocity ~0.03-0.3c, mean ~0.14c
- Highly ionized, logξ~2.5-6 erg s⁻¹cm, mean ~4.2 erg s⁻¹cm
- Large column density, $N_{H} \sim 10^{22}$ - 10^{24} cm⁻², mean $\sim 10^{23}$ cm⁻²

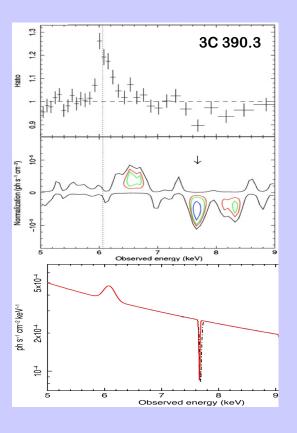
Suzaku discovery of ultra-fast outflows in radio-loud AGNs

- Broad Line Radio Galaxies are the radio-loud counterpart of Seyfert 1s
- Show observable strong relativistic radio jets
- Limited observations in X-ray archives to five "classical" sources
- 3C 111, 3C 390.3, 3C 120, 3C 382, 3C 445

Systematic spectral analysis (Tombesi et al. 2010b):

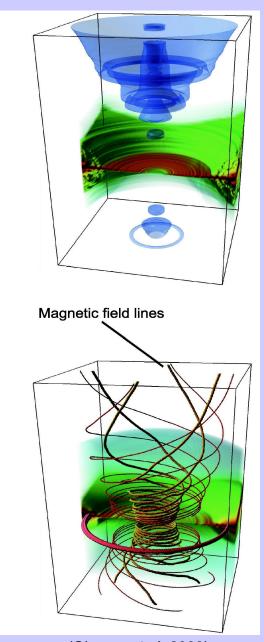

- Suzaku long (>100ks) observations
- 4-10 keV XIS spectral analysis
- Search for blue-shifted Fe K absorption lines




Centaurus A

- Fe XXV/XXVI K-shell series lines at E>7keV in 3/5 sources
- High detection probability from F-test and Monte Carlo simulations, >99%

Suzaku discovery of ultra-fast outflows in radio-loud AGNs

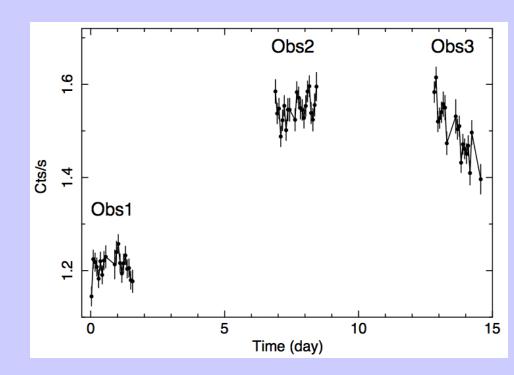

Photo-ionization modeling of Fe K absorbers

Source	$\log \xi $ (erg s ⁻¹ cm)	$N_{\rm H}$ $(10^{22} {\rm cm}^{-2})$	$v_{ m out}$ (c)
3C 111	5.0 ± 0.3	$>20^{a}$ $>3^{a}$ $1.1^{+0.5}_{-0.4}$	$+0.041 \pm 0.003$
3C 390.3	$5.6^{+0.2}_{-0.8}$		$+0.146 \pm 0.004$
3C 120b	3.8 ± 0.2		$+0.076 \pm 0.003$

Suzaku discovery of ultra-fast outflows in radio-loud AGNs

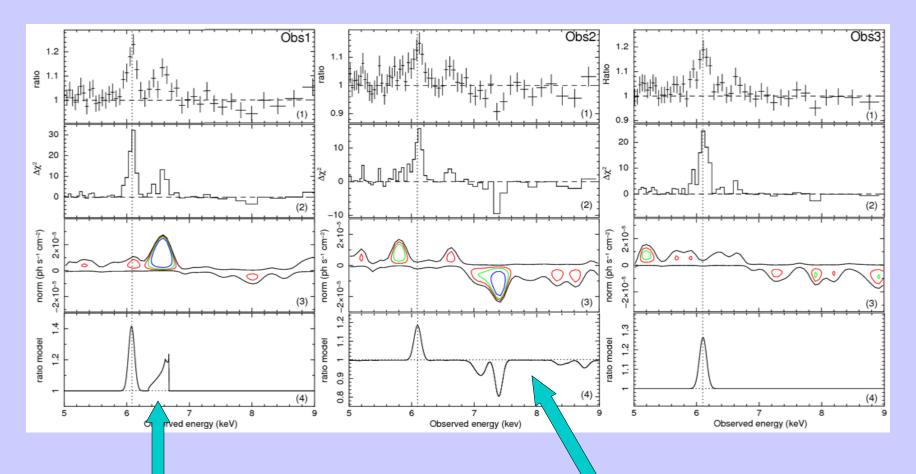
Physical characteristics of UFOs in BLRGs:

- Common, detected in 3/5 sources
- Compact and close to the BH, d<0.01-0.1pc (<100-1000r_g)
- Expected variability on ~ days, duty cycle?
- Covering fraction roughly ~0.5, similar to Seyferts
- Massive, instantaneous M_{out}~ 1M_{Sun}yr⁻¹ ~M_{acc}
- Powerful, E_K~10⁴³-10⁴⁵erg/s ~ radio jet power
- L_{bol}/L_{Edd} ~0.1-0.5, force multiplier Γ ?
- wind/photon momentum, $(M_{out}v_{out})/(L_{bol}/c) \ge 1$
- Radiation pressure important, but possible additional magnetic thrust to reach higher velocities
- Role on AGN feedback? (e.g., King 2010)



(Ohsuga et al. 2009)

Accretion disk-outflow connection in 3C 111 with Suzaku


Follow-up 3C 111: Suzaku proposal GO5 to monitor predicted UFO variability on ~7 days time-scales

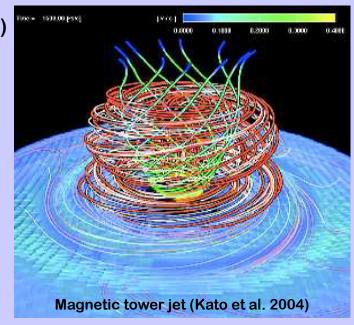
Tombesi et al. (2011, in prep.)

- 3 x 60ks Suzaku observations, september 2010
- 30% flux variability between Obs1 and Obs2
- 4-10 keV XIS spectral analysis, power-law continuum Γ ~1.7 and 6.4keV Fe K
- Detection emission line E=6.88keV in Obs1, absorption line E=7.75keV in Obs2
- High significance, >99.9% from F-test and Monte Carlo simulations
- Constancy emission/absorption lines excluded at 99.7% and 99.9%

Accretion disk-outflow connection in 3C 111 with Suzaku

Obs1

- Ionized relativistic line (relline profile)
- Bulk emission possibly from Fe XXV/XXVI
- Reflection from accretion disk ~20-100r_g

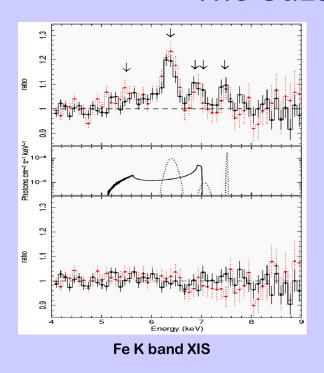

inclination ~18°

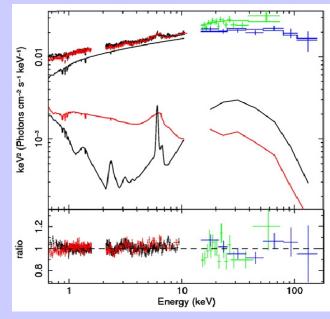
Obs2

- Ultra-fast Outflow (Xstar modeling)
- Velocity v_{out}=0.106±0.006c
- logξ=4.32±0.12 erg s⁻¹cm, Fe XXVI
- $N_{H} = (7.7 \pm 2.9) \times 10^{22} \text{ cm}^{-2}$

Accretion disk-outflow connection in 3C 111 with Suzaku

- Variability ~7days, d<0.006pc (<50-500 r_g , M_{BH} ~3x10 9 or 2x10 8 M_{sun})
- Ionized reflector, n>109cm⁻³, N_H>10²⁵cm⁻²
- Ultra-fast Outflow ~0.1c, for C~0.5, M_{out} ~ $1M_{Sun}$ yr⁻¹ ~ M_{acc}
- E_K~5x10⁴⁴erg/s, comparable radio jet power
- L_{bol}/L_{Edd} <0.3, E_{K}/L_{bol} ~0.06
- Wind/photon momentum, $(M_{out}v_{out})/(L_{bol}/c) \sim 1$
- Photospheric radius for τ ~1, momentum deposition ~100 r_g

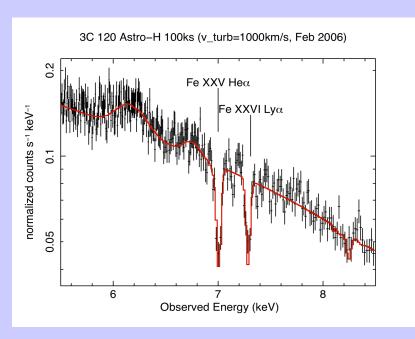

First direct evidence for accretion disk-outflow connection in an AGN

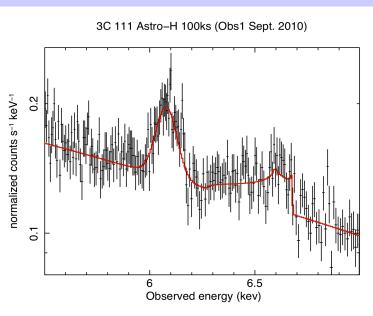

- Increased illumination inner part accretion disk due to rise in accretion rate Obs1-Obs2
- Outflow lifted from disk at ~100 $r_{_{\alpha}}$, acceleration to ~0.1c by radiation pressure Obs1-Obs2
- Superluminal source and inclination ~18°, possible plasma additional magnetic acceleration

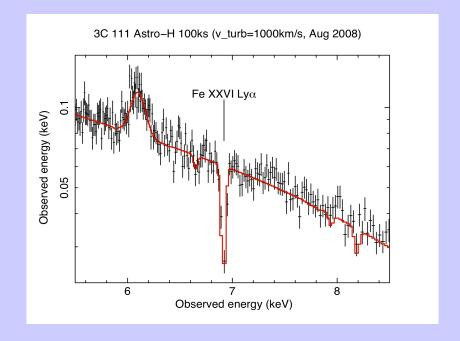
Under investigation

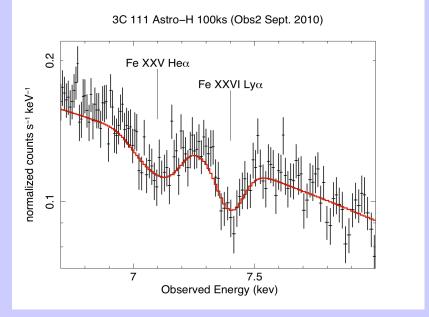
- Connection with radio jet? External layers, collimation, shocks? (e.g., Chattergee et al. 2011)
- Coupling between accretion disk, outflows and jets? (e.g., GRS 1915+105 Neilsen & Lee 2009)
- Role on AGN cosmological feedback? (e.g., King 2010) Additional monitoring required!

The Suzaku view of 3C 382






Broad-band Suzaku + Swift BAT


- Broad-band Suzaku (116ks) + Swift BAT 58-month, E=0.6-200keV (Sambruna et al. 2011)
- Continuum similar to Seyferts, Γ ~1.8 and cut-off E~200keV, Comptonization in corona
- Emission lines Fe K band: Fe K α ~6.41keV, Fe K β ~7.06keV, Ni K α ~7.5keV (P_F>99.99%)
- Ionized relativistic Fe K emission line profile: r_{in} =12±2 r_{g} , r_{out} =23±3 r_{g} , i=30°±1° (P_{F} >99.99%)
- (1) Mildly ionized $\log \xi = 1.54 \pm 0.03$, R_F~0.1, n~5x10⁷cm⁻³, d~0.3pc (BLR or inner torus)
- (2) Highly ionized $\log \xi = 2.93 \pm 0.04$, $R_F \sim 0.1$, $n \sim 10^{11} cm^{-3}$, $d \sim 10-20 r_g$ (inner accretion disk)

Astro-H micro-calorimeter simulations

Thank you